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LETTER TO THE EDITOR
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Received 19 July 1996

Abstract. TheT ⊗ t Jahn–Teller (JT) system has been studied previously by many authors. It
is well known that the potential energy surface for this system contains four equivalent wells in
strong coupling. The wells are not isotropic. In the strong coupling limit, the vibrationalt-mode
splits into ana1-mode of frequencyωT and ane-mode of frequency

√
(2/3)ωT . However,

it is difficult to incorporate this anisotropic effect into analytical models. Previously, the
current authors have used a unitary shift transformation and energy minimization procedure to
model many moderately to strongly coupled JT systems. However, the part of the Hamiltonian
which produces the anisotropy was not treated fully. We now present a modification of this
procedure for theT ⊗ t system in which a scale transformation is applied in addition to the
shift transformation. This is shown to introduce anisotropy automatically into the problem. We
show that the correct frequencies are obtained in the infinite coupling limit. Symmetry-adapted
combinations of the states associated with the wells are taken to obtain expressions for theT1

ground state andA2 inversion level. The inversion splitting between them is compared with
existing results. We then discuss how the scale transformation method can be applied to other
JT systems (for which the limiting frequencies are unknown), such as those in theIh symmetry
which applies to the C60 molecule.

The current authors [1, 2, 3, 4] previously developed a method for studying strongly coupled
Jahn–Teller (JT) systems in which a unitary shift transformationU (here calledUd ) is applied
to the Hamiltonian which has the effect of displacing the origin of the phonon coordinates.
The transformation contains parametersαj , which can be fixed by minimizing the total
energy of the system. This determines the positions of wells in the potential energy surface.
The states localized in the wells can then be written in the original untransformed basis by
multiplying them by the value ofUd appropriate to that well. However, this method does
not take into account the shape of the potential energy surface around the minima. If the full
Hamiltonian is included, the degeneracy of the vibrational frequency of the phonon modes
will (in general) be lifted and so anisotropy introduced into the system. The anisotropy
is important as JT systems must be described by vibronic states containing both electronic
and vibrational coordinates. The changes in frequency of the local modes will alter the
vibrational contributions to the vibronic states, which in turn will affect other important
properties of the system, such as reduction factors.

The frequencies of the local modes in the strong coupling limit can be determined
using the method of̈Opik and Pryce [5]. States can then be written down to incorporate the
effects of anisotropy by multiplying the states at the minima by harmonic oscillator functions
reflecting the strong-coupling frequencies. However, the results are only valid at strong
coupling, and the advantages of the transformation approach are lost. The aim of this letter
is to show how the unitary transformation method can be modified to include anisotropy for
all moderate to strong JT couplings by the addition of a new scale transformation. Results
will be given for the cubicT1 ⊗ t2 JT system. It will be shown that the frequencies of the
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local modes reduce to those predicted using theÖpik and Pryce method [5] in the strong
coupling limit.

As in the original transformation method, the states localized in the wells are good
eigenstates of the system as a whole in strong coupling. In finite coupling, the system will
tunnel between states of equivalent energy, so linear combinations of the states in the wells
must be taken. This can be achieved using projection operators. Results will be given for
theT1 ground states and the associatedA2 inversion level. The tunnelling splitting between
these states will be calculated and compared to existing results (both with and without
anisotropy).

The linear vibronic Hamiltonian for theT1 ⊗ t2 JT system may be written as [1]

H = 1

2

∑
j

[
P 2

j

µ
+ µω2

T Q2
j

]
I −

√
3

2

∑
j

VT Qjτj (1)

whereVT is the linear coupling constant,µ is the mass andωT the frequency of thet2 mode.
Pj andQj are the momenta and coordinates, respectively, of each of the componentsj of
the t2 mode, which will be labelled 4, 5 and 6.I andτj are matrices defined in terms of a
basis(x, y, z) as

I =
( 1 0 0

0 1 0
0 0 1

)
τ4 =

( 0 0 0
0 0 1
0 1 0

)

τ5 =
( 0 0 1

0 0 0
1 0 0

)
τ6 =

( 0 1 0
1 0 0
0 0 0

) (2)

andQj andPj can be written in the second quantized form

Qj = −
√

h̄

2µωT

(b
†
j + bj ) Pj = −i

√
h̄µωT

2
(b

†
j − bj ) (3)

whereb
†
j and bj create and destroy, respectively, phonons of symmetryj . The vibronic

Hamiltonian (1) can thus be converted into the second quantized form

H =
∑

j

h̄ωT

(
b

†
j bj + 1

2

)
I +

∑
j

KT (b
†
j + bj )τj (4)

where

KT =
√

3h̄

8µωT

VT . (5)

We now introduce a shift transformation

Ud = exp

(∑
j

αj (bj − b
†
j )

)
(6)

to displace the origin of phonon coordinates, and a scale transformation

Us = exp

(∑
ij

3ij (bibj − b
†
i b

†
j )

)
(7)

to take account of the anisotropy of the local vibrational modes. Theαj and 3ij are
parameters whose values are to be determined.
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Using the formula

e−SAeS = A + 1

1!
[A, S] + 1

2!
[[A, S], S] + . . . (8)

we can deduce that

U
†
dbjUd = bj − αj and U †

s bjUs =
∑

i

(
bi(cosh 23)ij − b

†
i (sinh 23)ij

)
. (9)

The transformations ofb†
j can be obtained by simply taking the Hermitian conjugate of

equation (9). We thus find that the vibronic Hamiltonian can be written in the form

H̃ = U †
s U

†
dHUdUs = H̃1 + H̃2 + H̃3 (10)

where

H̃1 = 3
2h̄ωT I + ∑

j

(
h̄ωT [α2

j + (sinh 23)2
jj ]I − 2KT αjτj

)
+ ∑

ij h̄ωT b
†
i bj (cosh 43)ij I

H̃2 = ∑
ij (−h̄ωT αj I + KT τj )(b

†
i + bi)(e−23)ij

H̃3 = − 1
2

∑
ij h̄ωT (b

†
i b

†
j + bibj )(sinh 43)ij I.

(11)

H̃1 describes couplings within the ground states (with no phonons) so is a good Hamiltonian
for determining the ground states of the system.H̃2 contains couplings to excited states with
one phonon, so can be later treated as a perturbation.H̃3 contains higher-order couplings,
so can be neglected to second order in perturbation theory. When all the elements3ij

are zero, this result reduces to that given in Bateset al [1] for application of the unitary
transformation alone.

We may fix theαj by solvingϕ†(∂H̃1/∂αj )ϕ = 0 [5]. As no terms contain bothαj and
3ij , this gives the same result for the positions of the wells as in the case without the scale
transformation [1]. There are thus four possible solutions. The wells are labelledk = a, b, c

andd and have associated electronic statesϕk given by(1/
√

3)(x, y,−z), (1/
√

3)(x, −y, z),
(1/

√
3)(−x, y, z) and (1/

√
3)(−x, −y, −z). The shift parameters are(α4, α5, α6) = βv,

wherev = (1, 1, −1), (1, −1, 1), (−1, 1, 1) and(−1, −1, −1) respectively.
The wells on the lowest potential energy sheet inQ-space haveC3v symmetry. At

these minima, the vibrational modes oft2 symmetry will be reduced toa1 ⊕ e. Therefore,
a judicious choice of3 is

3 = 1

4
S

†
k

( ln λa 0 0
0 lnλe 0
0 0 lnλe

)
Sk (12)

where theSk are unitary matrices which reduce thet2 modes of theTd group into the local
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modes ofa1 ande symmetries for a wellk. They are found to be

Sa = 1√
6

( √
2

√
2 −√

2
−√

3
√

3 0
1 1 2

)

Sb = 1√
6

( √
2 −√

2
√

2
−√

3 −√
3 0

1 −1 −2

)

Sc = 1√
6

( −√
2

√
2

√
2√

3
√

3 0
−1 1 −2

)

Sd = 1√
6

( −√
2 −√

2 −√
2√

3 −√
3 0

−1 −1 2

)
.

(13)

The scale transformation parametersλa andλe in the matrix3 can be fixed by taking
into accountH̃2 via second-order perturbation theory. This can be performed in any one
of the four equivalent wells. We will illustrate the results for the wella. In this well, the
ground vibronic state is|ϕa; 000〉 and its energy is

E0 = −EJT + 1

4
h̄ωT

[
λa + λ−1

a + 2(λe + λ−1
e )

]
(14)

where EJT = 4K2
T /3h̄ωT is the Jahn–Teller energy. This vibronic state is coupled in

second-order perturbation theory to the excited states|ϕi; n4, n5, n6〉 (i = 1, 2), where
ϕ1 = (1/

√
2)(−x, y, 0) andϕ2 = (1/

√
6)(x, y, 2z). Thus the ground state energy, correct

to second order, isE = E0 + 1, where

1 =
∑

i,n4,n5,n6

|〈ϕi; n4n5n6|H̃2|ϕa; 000〉|2
E0 − Ei

= − EJT

2λe (1 + 3EJT /h̄ωT )
. (15)

The scale transformation parameters are determined by setting∂E/∂λa = 0 and∂E/∂λe = 0
and using the matrix elements of the symmetric matrices e±23 in well a:

(e±23)ii = 1

3
(λ±1/2

a + 2λ±1/2
e ) (i = 4, 5, 6)

(e±23)45 = −(e±23)56 = −(e±23)64 = 1

3
(λ±1/2

a − λ±1/2
e ).

(16)

We thus find that

λa = 1 λe =
√

1 + 2EJT /h̄ωT

1 + 3EJT /h̄ωT

. (17)

It can be seen that the vibrational frequency of thee modes lies betweenωT (in
weak coupling) and

√
(2/3)ωT (in strong coupling). One main advantage of the scale

transformation method is that other methods [3, 6] have to do, in principle, an infinite order
perturbation calculation to obtain this result.

The ground state energy can be seen to take the limits

E|KT →0 = 3

2
h̄ωT E|KT →∞ = −EJT + 1

2
h̄ωT

(
1 + 2

√
2

3

)
. (18)



Letter to the Editor L527

The weak coupling result is the same as would be predicted in the absence of anisotropy.
The strong coupling result is the same as would be expected for one mode of frequencyωT

and two modes of frequency
√

(2/3)ωT .
The vibronic states associated with the wells can be written in the untransformed picture

in the form

|9k〉 = U
(k)
d U(k)

s |ϕk; 000〉 (k = a, b, c, d). (19)

Linear combinations of these states must be taken to allow for tunnelling between the wells
in finite coupling. These can be obtained using projection operator techniques, and are the
same as those obtained in our previous work [1, 2]. We thus find aT1 triplet ground state
and anA2 singlet inversion (or tunnelling) level, given by

|T1x〉 = Nt [−|9a〉 − |9b〉 + |9c〉 + |9d〉]
|T1y〉 = Nt [−|9a〉 + |9b〉 − |9c〉 + |9d〉]
|T1z〉 = Nt [|9a〉 − |9b〉 − |9c〉 + |9d〉]
|A2〉 = Na[|9a〉 + |9b〉 + |9c〉 + |9d〉]

(20)

whereNt and Na are normalization constants. Both the normalization constants and the
energies of the states can be evaluated after standard commutation relationships have been
taken into account. We find that the energies of the states are given by

ET1 = 〈T1z|H|T1z〉 = H11 − H12

1 + St/3

EA2 = 〈A2|H|A2〉 = H11 + 3H12

1 − St

(21)

whereH11 = E0 and

H12 = 1

3
St

[
3(1 + 2λ2

e + 4λe)

(1 + 2λe)2
EJT − h̄ωT

2

(
1+2λe + 1 − λ2

e

1 + 2λe

− (λ3
e + λ2

e − λe − 1)

λe(2 + λe)

)]
.(22)

St is the phonon overlap between the vibrational states associated with any two different
wells i andj , and is given by

St = 〈000|U(i)†
s U

(i)†
d U

(j)

d U(j)
s |000〉 = 3c(λe) exp

(
−b(λe)

EJT

h̄ωT

)
(23)

where

c(λe) =
√

λe

(1 + 2λe)(2 + λe)
and b(λe) = 4λe

1 + 2λe

. (24)

We thus find that the inversion splittingδ(= EA2 − ET1) is given by

δ = 2St

(1 + 2λe)(3 + St )(1 − St )

[
(1 − λ2

e)
2

λe(2 + λe)
h̄ωT + 4

(1 + 4λe + λ2
e)

(1 + 2λe)
EJT

]
. (25)

In the strong coupling limit,δ can be written in the simpler form

δ = a(λe)EJT exp

(
−b(λe)

EJT

h̄ωT

)
(26)

where

a(λe) = 8

(
1 − 3λ2

e

(1 + 2λe)2

)
c(λe). (27)
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When the strong-coupling value ofλe = √
(2/3) is substituted into this expression,a and

b are then constants and the form of the expression is the same as that obtained by other
authors. More specifically, we obtain the valuesa = 1.8887 andb = 1.2404. These are
very close to the results of the analytical perturbation calculations of Schulz and Silbey [6],
who obtained the resultsa = 1.89 andb = 1.2405 when anisotropic frequencies ofωT

and
√

(2/3)ωT were used. Our value ofb is identical to that obtained by Bersuker and
Polinger [9] and references therein for the ‘harmonic approximation’ (although the former
approximate the numerical value ofb to 1.24). The value ofb is also in close agreement
with the numerical results of Caner and Englman [7]] (who obtain 1.2405 forEJT /h̄ωT < 4
and 1.2 forEJT /h̄ωT > 4), although they obtain values of 1.32 and 1.2 respectively fora.

The results do differ from those of more recent accurate calculations for finite coupling.
Polinger et al [10] obtain results both by numerical integration and an analytical WKB
method to try to determine the contributions to the inversion splitting from tunnelling
and ‘hopping’. Numerical calculations of O’Brien [11] showed that in the region near
EJT /h̄ωT = 6, a ≈ 0.7 andb ≈ 1.1. However, she suggests that the factor in front of
the exponential should not be proportional toEJT = 2k2

τ /3h̄ωT , but some factor raised to
a lower power ofEJT at stronger coupling. However, she concluded that more accurate
calculations are needed to get a true asymptotic form. O’Brien [8] and Polinger [12]
suggested that the prefactor should depend on powers ofkτ and k1.07

τ respectively, rather
than onEJT , for kτ between 2 and 8. From our results, it is clear that the prefactor
contains terms depending in a non-trivial manner on bothEJT andh̄ωT , and that no simple
asymptotic form exists.

Polinger [12], using numerical integration of the WKB theory, suggested thatb = 1.098,
in agreement with O’Brien [11]. Our value ofb lies between the limits of 1.2404 in strong
coupling and 1.33 in weak coupling, and so can never approach the values near 1 suggested
by these authors. This must be attributed to the fact that our method is strictly only valid
in very strong coupling; higher-order corrections from the neglect ofH̃2 in the transformed
Hamiltonian would need to be included to obtain results to a higher degree of accuracy.
We may conclude that, for a relatively simple analytical calculation, the results are very
reasonable. Although more sophisticated methods may produce more accurate results for
the inversion splitting, the difficulty in obtaining a full set of excited states mean that they
cannot be used for the calculation of second-order reduction factors, for example.

The main aim of this letter was to illustrate how a new scale transformation method
can be applied in addition to the shift transformation used in previous work [1, 2, 3, 4] in
order to incorporate the effects of anisotropy into models of strongly coupled JT systems.
It has been applied to the well known case of the cubicT ⊗ t JT system to illustrate that
the method is valid. Work has just been prepared in which the method is applied to the
states associated with the pentagonal(D5d) wells which can arise in theT ⊗ h system in
icosahedral symmetry(Ih). The effects of anisotropy in this system are as yet unknown.
We hope also to be able to extend the method to the trigonal(D3d) wells of this system in
the near future. The above method requires some modification in this case, as the reduction
of the hg mode contains a repeated irreducible representation. The results of both cases
should help in the understanding of the fullerene C60 and related compounds, where it is
known that such a JT effect can be exhibited.

This work was carried out under a NATO collaborative exchange programme. One of us
(YML) would like to thank the Physics Department of the University of Nottingham for a
Research Assistantship.
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